关于数学家的名人故事
关于数学家的名人故事篇1
有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当自己是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?
过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。
数学是一个很奇妙的东西。它的出现是由历代著名学者付出一生心血后,经过数千年的历史演变而成。这些数学家的精神值得我们敬佩,更是推动我们前进的动力!
关于数学家的名人故事篇2
伽利略17岁那年,考进了比萨大学医科专业。他喜欢提问题,不问个水落石出决不罢休。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。” 比罗教授不高兴地说:“你提的问题太多了!你是个学生,上课时应该认真听老师讲。
多记笔记,不要胡思乱想,动不动就提问题,影响同学们学习!”“这不是胡思乱想,也不是动不动就提问题。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”伽利略没有被比罗教授吓倒,继续反问。 “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授搬出了理论根据,想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。这位数学家的故事也成为追求真理的典范。
关于数学家的名人故事篇3
商高,周朝数学家。
数学成就据《周髀算经》记载,主要有三方面:勾股定理、测量术和分数运算。
《周髀算经》中记载了这样一件事——一次周公问商高:“古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?”商高回答说:“数是根据圆和方的道理得来的,圆从方来,方又从矩来。矩是根据乘、除计算出来的。”
这里的“矩”原是指包含直角的作图工具。这说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形。《周髀算经》并有“勾股各自乘,并而开方除之”的记载,说明当时已普遍使用了勾股定理。勾股定理是中国数学家的独立发明,在中国早有记载。《周髀算经》还记载了矩的用途:“周公曰:大哉言数!请问用矩之道。商高曰:平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方。”
据此可知,当时善于用矩的商高已知道用相似关系的测量术。“环矩为圆”,即直径上的圆周角是直角的几何定理,这比西方的发现要早好几百年。
关于数学家的名人故事篇4
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休 息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ . +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课 了吧!正要借口出去时,却被 高斯叫住了! 原来呀,高斯已经算 出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何 算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ . +96+97+98+99+100 100+99+98+97+96+ . +4+3+2+1 =101+101+101+ . +101+101+101+101 共有一百个 101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于<5050>从此以后高斯小学的学习过程早已经超越了其它的同学,也 因此奠定了他以后的数学基础,更让他成为——数学天才!
关于数学家的名人故事篇5
1910年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。
华罗庚上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。
1936年夏,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。
华罗庚十分注意数学方法在工农业生产中的直接应用。他经常深入工厂进行指导,进行数学应用普及工作,并编写了科普读物。
华罗庚也为青年树立了自学成才的光辉榜样,他是一位自学成才、没有大学毕业文凭的数学家。他说:“不怕困难,刻苦学习,是我学好数学最主要的经验”,“所谓天才就是靠坚持不断的努力。”
华罗庚还是一位数学教育家,他培养了像王元、陈景润、陆启铿、杨乐、张广厚等一大批卓越数学家。为了培养青年一代,他为中学生编写了一些课外读物。
关于数学家的名人故事篇6
茅以升是我国著名铁路桥梁专家,他曾主持建造了杭州的钱塘江大桥、南京大桥等。茅以升从小就很,上学的时候他就对数学有着特殊的偏好,据说他能一口气背出圆周率小数点后一百多位的数字。
要说他立志当桥梁专家的事,那是在茅以升上中学的时候,在他的发生了一起"文德桥倒塌"的事故。当时在桥上行走的人都掉进了河里,死了很多无辜的。茅以升听到这个消息后非常痛心,他暗下决心长大后一定要建一座坚固的桥。后来,茅以升终于学有所成,为了掌握更多的知识,他还远渡重洋去了国外留学。回国后他被请去作钱塘江大桥的设计师。就这样在茅以升和他的同事们的下,终于建成了钱塘江大桥,他的设计图纸被美国桥梁设计专家华德尔博士看了后赞不绝口。
关于数学家的名人故事篇7
张丘建,北魏时清河(今河北临清市一带)人,生平不详,我国南北朝时期的著名数学家,有《张丘建算经》传世。
《张丘建算经》约成书于公元466—485年间,共三卷93题,包括测量、纺织、交换、纳税、冶炼、土木工程、利息等各方面的计算问题。其体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份宝贵的遗产。后世学者北周甄鸾、唐李淳风相继为该书做了注释。特别是唐代,经太史令李淳风注释整理,收入《算经十书》,成为当时算学馆先生的必读书目。《算经十书》是《周髀算经》、《九章算术》《海岛算经》、《孙子算经》、《五曹算经》、《夏候阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《数术记贵》等十种。《算经十书》至清代多已佚失。乾隆初年(1736)以后,戴震致力整理古代算书,复从《永乐大典》中辑出,使后人得见古代数学面目。
张丘建一生从事数学研究,造诣很深。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔卡西《算术之钥》等著作中均出现有相同的问题。张丘建在《算经》中较早提出了“百鸡问题”:“鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。百钱买百鸡,问鸡翁、母、雏各几何?”这道题的意思是:“每只公鸡价值5元,母鸡价值3元,3只小鸡价值1元,用100元钱买100只鸡,问,公鸡、母鸡、小鸡各可以买多少只?”“百鸡问题长期以来被作为讲解不定方程的入门例子。
据传、张丘建小时候才思敏捷,聪慧过人,尤其是计算能力超群,被人誉为“神童“。当时的数学家夏侯阳得知这个消息后,有意收张丘建为徒,但不知他是否真象传说中那样极具数学天赋,于是便找到了张丘建,当面出了道题来考他。题目是这样的:有甲乙两个和尚为寺庙分头去化缘,半个月后他俩化到些银两回到寺庙。此时若乙给甲10两银子,甲比乙所多的是乙余下的5倍;若甲给乙10两银子,那么二人的银两相等,问甲乙各化到多少银两?
小丘建略加思考便有了主意,他说:“根据若甲给乙10两银子,那么二人的银两相等,可知,原来甲比乙多10+10=20两银子。再根据若乙给甲10银子,可以判定此时甲比乙多了20两,加上原来多的20两共计多出40两,而这多出40两正是乙余下的5倍,所以乙余下的银子是40÷5=8两,而这余下的8两是乙给了甲10两后所剩下的银子,所以可以得知乙化到的10+8=18两银子,则甲化到18+20=38两银子。”听了小丘建的回答,夏侯阳十分满意,马上收小丘建为徒。这道题目在《张丘建算经》中有记载,故事不足为信,但可以从中加深对该书的了解。