2024新高考七省联考(九省联考)数学试卷
新高考九省2024高三联考将于近期开考,本次九省联考科目包括有语文、数学、英语、物理、化学、生物、政治、历史、地理等。下面小编给大家带来2024新高考七省联考(九省联考)数学试卷,供大家参考!
2024新高考七省联考(九省联考)数学试卷
高三学生数学快速提分的技巧
摆正心态
如果你不是追求清华北大上交复旦这样的国内顶尖大学,或许现在的学校排名参照往年没有达到那类学校的高度,那么还是静下心来钻基础吧,答主高考(精品课)之前一直面对我只是普通一本的成绩妄想考人大,大把时间做难题,结果高考卷子下来题目爆简单,同考室还有提前半小时交卷的~~
一不小心做得对的题粗心做错结果优势科目的数学只有120多,就加上惨不忍睹的英语(精品课),来到了现在这个学校,数学单科还没有我们班上那些我平时甩几十分的人高,所以说还是回归基础吧!
夯实基础的重点方法
特别是基础差的同学,一定要老老实实的从课本开始,不要求快,要复习一个章节,掌握一个章节。
具体的方法是,先看公式,理解、记住,然后看课后习题,用题来思考怎么解,不要计算,只要思考就好,然后再翻课本看公式定理是怎么推导的,尤其是过程和应用案例。
特别注意这些知识点为什么产生的。如集合、映射的数学意义是为了阐述两组数据(元素)之间的关系。而函数就是立足于集合。并由此产生的充要条件等知识点。
通过这么去理解,你会发现,数学基础很快就能掌握。但记住,一定要循序渐进,不能着急。
对于容易犯的错误,要做好错题笔记,分析错误原因,找到纠正的办法;不能盲目做题,必须在搞清楚概念的基础上做才是有效的,因为盲目大量做题,有时候错误或者误解也会得到巩固,纠正起来更加困难。
对于课本中的典型问题,要深刻理解,并学会解题后反思:反思题意,防止误解;反思过程,防止谬误;反思方法,精益求精;反思变化,高屋建瓴。
这样不仅能够深刻理解这个问题,还有利于扩大解题收益,跳出题海!
提高基础知识应用
在注重基础的同时,又要将高中数学合理分类。分类其实很简单,就是按照课本大章节进行分类即可。
在复习过程中,速度快、容量大、方法多,特别是基础不好的同学,会有听了没办法记,记了来不及听的无所适从现象,但是做好笔记又是不容忽视的重要环节,那就应该记关键思路和结论,不要面面俱到,课后整理笔记,因为这也是再学习的过程。
再谈做题。做题大家都认为是复习的主旋律,其实不是的。不论对于哪种层次的学生,看题思考才是复习数学的主旋律。
看题主要是看你不会做的题,做错的题,尤其是卡住你的那一个步骤。为什么答案中这道题这个步骤这么写,为什么用这个公式。
这个公式是从那几个条件确立的,它的出现时为了解决什么问题。这是思考方向。很多同学都有这个问题,题目不会做,往往就是一步卡死,只要这一步解决了,后面都会。
合理安排
各科还是都要学一学,不能偏科啊!如果英语在高中几乎完全不学,那估计再怎么努力都白搭了。
利用周围资源
本来不应该谈及这个问题,但是还是得说。高考的是后,能抄就抄!别怕那所谓的监控!别怕那所谓的老师,他们也知道高考对于一个学生前途的重要性,在一定限度内都是能睁一只眼闭一只眼的,但是不要冲动的去拿别人的卷子啊!只是偏偏头看一看还是可以的。
三角函数题型解答
这个题型有两种考法,大概10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。
(一)解三角形不管题目是什么,作为被考察者,你要明白关于解三角形,你只学了三个公式——正弦定理,余弦定理和面积公式。所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。
(二)三角函数三角函数,套路一般是给出一个比较复杂的式子,问函数的定义域、值域、周期频率和单调性等问题。
立体几何题型答题技巧
相比于前面的三角函数,立体几何题型要稍微复杂一些,可能会卡住一些人。该题通常有2-3问,第一问求某条线的大小或证明某个线/面与另外一个线/面平行或垂直,最后一问求二面角。
这类题解题方法主要有两种,传统法和空间向量法,其中各有利弊。
(一)向量法:使用向量法的好处在于没有任何思维含量,肯定能解出最终答案。缺点是计算量大,且容易出错。
应用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c)然后进行后续证明与求解。
(二)传统法:学习立体几何章节,虽然学了很多性质定理和判定定理,但针对高考立体几何大题而言,解题方法基本是唯一的,除了上图6和8有两种解题方法以外,其他都是有唯一的方法。所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。
另外,还有一类题,是求点到平面距离的,这类题百分之百用等体积法求解。
数列题型怎么答
从这里开始,题型难度开始明显增加,但只要掌握了套路和方法,同样并不困难。数列的考察主要是求解通项公式和前n项和。
(一)通项公式观察题目中给出的条件形式,不同形式对应不同的解题方法。
通项公式的求法我给出了8种,着重掌握上图中的1、4、5、6、7、8,其实4-8可以算作一种。除了以上八种方法,还有一种叫定义法,就是题中给出首项和公差或者公比,按照等差等比数列的定义进行求解。
(二)求前n项和求前n项和主要有四种方法——倒序相加法,错位相减法,分组求和法,裂项相消法。同样,每种方法都有对应的使用范围。
当然,还有课本上关于等差数列和等比数列求前n项和的基本方法,请大家牢记掌握。