2024九省联考数学试题
此次九省分别为安徽、江西、黑龙江、吉林、甘肃、广西、贵州、河南、新疆。既然这样,那么下面小编给大家带来2024九省联考数学试题,供大家参考,希望可以帮助到你!!
2024九省联考数学试题
高三数学重要知识点整理
第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是_年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有答案,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高三如何提高数学成绩
1、高效阅读的方法需要训练,是一种眼脑相互协调的高效率学习方法,一般情况下,培养阅读者直接把视觉器官感知的文字符号转换成意义,消除头脑中潜在的发声现象,形成眼脑直映,结合记忆训练,用以提高学习效率。
2、有学者推荐精英特速读记忆训练作为假期学生学习计划中,以为软件练习30个小时就能使阅读速度提高5-10倍左右,学习每天练习1-2个小时,两个星期就能取得很好的效果,普通人300字每分钟左右的阅读速度会达到3000字每分钟的阅读速度,记忆力也相应的快速提升。这个建议得到了中央教科所心理研究室原主任、多年从事脑心理研究的专家朱法良的高度认可,目前我们学校很多班级开展的假期速读速记训练课程,用的就是精英特快速阅读记忆训练系统。
3、我们班一直学习精英特快速阅读到现在,我训练到顶级,去年考上了北京大学,同时通过了香港科技大学面试,你需要的话,我可以给你我的成绩。快速阅读作为一项终身学习技能应用到学校和学生假期学习上是很必要的,希望我的经历对你有用。
高三学生数学快速提分的技巧
对于基础一般人来说,数学考试最重要的就是不能心太大。数学的学习需要天分,更需要技巧。平时一定不能松懈,每天都必须做题保持熟练程度。并且从平时开始,做题就要养成细心仔细的习惯,要保持一定的警惕(非常重要!!!!),注意是否有没有出题老师挖的陷阱,有没有未考虑到的地方,比如集合里的空集,函数大题里的定义域,分母不能为零等等。还有就是要动脑,数学不像有些学科现成的东西对号入座就可以了,数学需要你有灵活的思维,不动脑筋就想学好考好是不可能的。
高考的数学,最后两道题的难度,是超过很多人的想象的,特别是最后一道压轴题的第二、第三问,即使想到做这道题的方法,要想完全答对,必须经过很复杂的推断步骤,在这个过程中,很难避免不出差错。因此,数学想得满分,是基本上不可能的事。从各省公布的状元啥的单科最高分,也是很难得见到数学满分的。通常,数学要想得140分以上,是很困难的事。
对于数学基础好、做题速度比较快的同学,在总复习阶段,一定要搭配高难度的题做,否则,面对每次考试的压轴题就会感到困难。
从某种角度讲,数学也是技能型的学科,用“三天不练就手生”来形容绝不为过,因此数学也是需要经常练习,不间断,最好是每天都能保持做一点点的题。
在平时的作业中,注意提高做题的速度,在高考数学中,很少有人说时间绝对的够用,从高三起,注意大小考试的时间分配。记录每次做填空、选择题、以及后面大题所花的时间,以及最后的准确度,为考试中的判断提供 经验 。
高中的数学考试,由于对数理思维能力要求很高,所以在考试的时候,考试的心情、身体状况、以及考前几天是否做过练习都对考试成绩有影响。
在考试的时候,不要总想着要考多少多少分,要把注意力放在题上。时间分配很重要,不是说做一道题就看一次时间,但是一定要有个大致的规划,要找到最合适的做题速度,不会因为做的太快降低正确率,也不因为做的太慢而浪费时间。总之,在经历了多次考试后,一定要争取找到适合自己的做题速度。该放弃的题一定要放弃,花20分钟去做5分的选择题、4分的填空题或者6分的大题某小问是没有多大意义的。对于数学基础不是很好,平时考试很少上130分的同学,建议在考试中,先做压轴题,后两问如果经过短暂的思考还没找到方法的,直接放弃,把宝贵的时间分配到前面的容易得分的题中去。
学习的责任心和自信心在学习数学过程中也是十分重要,只要是从初一开始,踏踏实实按照数学学习的规律在学习,数学思维会得到逐步的提高,即使缺少天分,经过六年的踏实训练,高考数学试卷中80%的题是基础的试题,只要细心不出差错,基础部分拿到满分是完全可能的,也就是120分。再把这个踏实的精神用在 其它 学科上,在其它学科上多得一点分,完全可以弥补天分的不足,考北大清华也是没多少问题的,即使考不上北大清华,差距也不会太大。
高考必备的数学公式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba
|a-b||a|-|b| -|a|a|a|
一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1__X2=c/a 注:韦达定理
判别式
2-4ac=0 注:方程有两个相等的实根
2-4ac0 注:方程有两个不等的实根
2-4ac0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)
cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)
tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))
ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c__h
正棱锥侧面积 S=1/2c__h 正棱台侧面积 S=1/2(c+c)h
圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi__r2
圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l
弧长公式 l=a__r a是圆心角的弧度数r 0 扇形面积公式 s=1/2__l__r
锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h
斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长
柱体体积公式 V=s__h 圆柱体 V=pi__r2h
通项公式的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:
①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数,使an+1 +=q(an+)进而得到。
②已知a1=a,an=an-1+f(n)(n2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。
③已知a1=a,an=f(n)an-1(n2),求an时,利用累乘法求解。