2023年全国高考甲卷文科数学试卷
温馨提示:查看完整版及各省份高考试卷真题,可下载全文查看或微信搜索公众号【5068教学资料】,关注后在对话框回复【高考真题】即可免费获取。
高考数学必考公式知识点
1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,
周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4.函数奇偶性:
(1)对于属于R上的奇函数有f(0)=0
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5.数列爆强定律:
1.等差数列中:S奇=na中,例如S 13 =13a 7
2.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立
4.等比数列爆强公式:S(n+m)=S(m)+qmS(n)可以迅速求q
6.数列的终极利器,特征根方程。(如果看不懂就算了)。
首先介绍公式:对于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
7.函数详解补充:
(1)复合函数奇偶性:内偶则偶,内奇同外
(2)复合函数单调性:同增异减
(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
8.常用数列bn=n×(2n)求和Sn=(n-1)×(2(n+1))+2记忆方法
前面减去一个1,后面加一个,再整体加一个2
9.适用于标准方程(焦点在x轴)爆强公式
k椭=-{(b)xo}/{(a)yo}k双={(b)xo}/{(a)yo}k抛=p/yo
注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10.强烈推荐一个两直线垂直或平行的必杀技
已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0
若它们垂直:(充要条件)a1a2+b1b2=0;
若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)
注:以上两公式避免了斜率是否存在的麻烦,直接必杀!
高考数学各题型答题技巧
一、三角函数题
三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类:
1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
3.解三角形问题,判断三角形形状,正余弦定理的应用。
注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“ 累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。
3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。
全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,切实掌握好线面平行性质定理、面面垂直的性质定理,这两个定理不会用是失分的关键,解答过程不严格是扣分的主要因素。
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反、注意计数时利用列举、树图等基本方法;
5、注意条件概率公式;注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意最后一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
高考数学考试时间分配原则
做高考数学选择题和填空题时,每道题的答题时间平均为3分钟,容易的题争取一分钟出答案。高考数学选择题有12道,填空题有4道,每道题占5分,争取在48分钟内拿下这90分。因为基本没有时间回头检查,要力求将试题一次搞定。
做高考数学大题时,每道题的答题时间平均为10分钟左右。基础不同的学生对试题难易的感受不一样,基础扎实的学生如果在前面答题比较顺利,时间充裕,可以冲击最后几道大题;平时学习成绩一般的同学,对高考数学后几道大题,能做几问就做几问,争取拿到步骤分;平时成绩薄弱的考生,一般来说应主攻选择题和填空题,大题能做几问就做几问,最后答不出来的高考数学题可以选择放弃。
高考数学答题方法有什么
1、时间分配
高考数学就是在120分钟内抢150分的问题,合理的时间分配与安排,对分数的提升会有很大帮助,可以把时间分成4个30分钟,第一个30分钟搞定选择填空(允许留下2道选择+2道填空)。
高考数学考试第二个30分钟做完大题(允许留下1道大题+2道题目的第二问),第三个30分钟再回头攻克刚刚留下的题目(这个时间可以保持在30-45分钟),最后30分钟或者15分钟检查。
2、养成检查的好习惯
高考数学做完题目再进行检查和验算,可以有效地提高我们的答题正确性,但是绝大部分同学都没有养成这个习惯。相对而言学霸基本都会进行检查和验算。
尤其是简单的高考数学问题,可能会因为粗心导致细节性的小错误,高考数学做题后检查也是为了避免做题的时候,出现错误而自己不知道,这也是最后的一个保障。
3、提高效率不等于提高速度
高考数学最重要的是准确率,提高的应该是做题效率,而不是一味的提升做题速度,所以虽然时间很重要,但是不能因为节省时间就在高考数学审题和答题上扣时间。
这样只会在高考数学审题的时候不够仔细,导致我们粗心大意,在高考数学细节上出现一些错误,须知细节决定成败,所以我们答题要先确保准确率,再来想着如何提高速度。