2023年高考乙卷数学真题试卷
温馨提示:查看完整版及各省份高考试卷真题,可下载全文查看或微信搜索公众号【5068教学资料】,关注后在对话框回复【高考真题】即可免费获取。
高考数学必背公式
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系x1+x2=-b/ax1__x2=c/a注:韦达定理
判别式b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有两个不相等的个实根
b2-4ac<0注:方程有共轭复数根
2、立体图形及平面图形的公式
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2p__2=2pyx2=-2py
直棱柱侧面积S=c__h斜棱柱侧面积S=c'__h
正棱锥侧面积S=1/2c__h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi__r2
圆柱侧面积S=c__h=2pi__h圆锥侧面积S=1/2__c__l=pi__r__l
弧长公式l=a__ra是圆心角的弧度数r>0扇形面积公式s=1/2__l__r
锥体体积公式V=1/3__S__H圆锥体体积公式V=1/3__pi__r2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s__h圆柱体V=pi__r2h
3、图形周长、面积、体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)
和:(a+b+c)__(a+b-c)__1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
常用的三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高考数学常考题型和答题技巧
1.解决绝对值问题
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:
①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3.配方法
利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法
解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:
设元一换兀一解兀一还元
5.待定系数法
待定系数法是在已知对象形式式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写
6.复杂代数等式
复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:
(-----)(----)=0两种情况为或型
②配成平方型:
(----)2+(----)2=0两种情况为且型
数学中两个最伟大的解题思路
求值的思路列欲求值字母的方程或方程组
2)求取值范围的思路列欲求范围字母的不等式或不等式组
怎样复习高考数学
复习数学时有两种方法。一种是先做题,遇到不会的知识点时再查书;一种是先把知识点复习完了之后再做题。
这两种方法各有利弊。第一种好复习,也没那么枯燥,但容易有所遗漏;第二种比较适合基础不太好的同学。因此建议,底子不好的同学第一轮复习时不要怕麻烦,先打好基础,然后再通过做题查缺补漏。
很多同学在复习数学时很容易忽略教科书,觉得那上面的东西太基础。但是,笔者发现,有几年的真题其实是从书上一些题型变化而来的。因此一定要仔细过一遍书,把书后的习题认认真真做一遍。
在初期复习时千万不要偷懒,不要认为某些题你会了就可以不做了,因为你很可能会笔误,甚至是习惯性笔误,因此开始时候不要怕麻烦,一定找纸写下来。
做完题后或者考完试后记得写总结。很多同学喜欢把题目总结得整整齐齐,事后却不看,那么总结错题笔记就是一个最费时间而且没用的方法。那么怎么办?
笔者认为不是所有题都得抄,但所有错题都是有错因的。因此,准备两个大本,一个小本。一个大本将第一遍的错题总结下来,另一个大本是要总结那些在一星期后你重做还是会错的题。另外一个小本则是记下错因,不要简单地记马虎什么的,而是一定要细。比如5+7你当作了13,笔者因为轻视这个问题,曾在这个计算上摔了三次跟头。
第三轮时就开始大量做题吧。但是重心还是要放到真题上,模拟题也要做。总结常考题型和一些陌生题型。这时候,你见的题型也多了,不妨自己总结一下常考大题的典型题,总结20道,时常看看,绝对会有很大收获。
高中数学学习方法
学习数学,要学会分析自己,数学是自己的薄弱科目,越是这种薄弱科目,越不能稀里糊涂地学习。有的同学问他数学哪难,他也说不上来到底是哪不会,总之就是一句话,哪里都难,这种是最头疼的。其实不会,多半是因为有难点,把难点找到并且攻克,那么题就解出来了。
学数学的时候,要清楚哪些知识点没弄懂,什么类型的题不会做,具体的难点在哪,对这些要做到心中有数。都明白之后,然后做一份突破计划。突破计划当中要注意两点:对于计划当中列出的不懂的专题,要分配好时间段,然后各个击破;分配好做题跟看书的时间,不能顾此失彼,要两者兼顾。
高中数学必修和选修,是从课程计划中对课程实施的要求来区分的两种类型。其中,必修的主导价值在于培养和发展学生的共性,而选修的主导价值在于满足学生的兴趣、爱好,培养和发展学生的个性。